Left inverses of matrices with polynomial decay

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decay Rates for Inverses of Band Matrices

Spectral theory and classical approximation theory are used to give a new proof of the exponential decay of the entries of the inverse of band matrices. The rate of decay oí A'1 can be bounded in terms of the (essential) spectrum of A A* for general A and in terms of the (essential) spectrum of A for positive definite A. In the positive definite case the bound can be attained. These results are...

متن کامل

Finding left inverses for operators on l(Z) with polynomial decay

We study the left-invertibility of infinite matrices indexed by metric spaces with polynomial growth. Under different conditions on the rows and the columns, we prove that being bounded-below in lp for some 1 ≤ p ≤ ∞, implies that there is a left-inverse which is bounded in lq, for all 1 ≤ q ≤ ∞. In particular, this applies to matrices with polynomial decay, indexed by discrete groups of polyno...

متن کامل

A study on new right/left inverses of nonsquare polynomial matrices

This paper presents several new results on the inversion of full normal rank nonsquare polynomial matrices. New analytical right/left inverses of polynomial matrices are introduced, including the so-called τ -inverses, σ-inverses and, in particular, S-inverses, the latter providing the most general tool for the design of various polynomial matrix inverses. The applicationoriented problem of sel...

متن کامل

Inverses of Multivariate Polynomial Matrices using Discrete Convolution

A new method for inversion of rectangular matrices in a multivariate polynomial ring with coefficients in a field is explained. This method requires that the polynomial matrix satisfies the one-to-one mapping criteria defined in [1].

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2010

ISSN: 0022-1236

DOI: 10.1016/j.jfa.2010.07.014